Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Inconel 718 is a widely popular aerospace superalloy known for its high-temperature performance and resistance to oxidation, creep, and corrosion. Traditional manufacturing methods, like casting and powder metallurgy, face challenges with intricate shapes that can result in porosity and uniformity issues. On the other hand, Additive Manufacturing (AM) techniques such as Powder Bed Fusion (PBF) and Direct Energy Deposition (DED) can allow the creation of intricate single-part components to reduce weight and maintain structural integrity. However, AM parts often exhibit directional solidification, leading to anisotropic properties and potential crack propagation sites. To address this, post-processing treatments like HIP and heat treatment are necessary. This study explores the effects of the raster and stochastic spot melt scanning strategies on the microstructural and mechanical properties of IN718 parts fabricated using Electron Beam Powder Bed Fusion (EB-PBF). This research demonstrates that raster scanning produces columnar grains with higher mean aspect ratios. Stochastic spot melt scanning facilitates the formation of equiaxed grains, which enhances microstructural refinement and lowers anisotropy. The highest microstructural values were recorded in the raster-produced columnar grain structure. Conversely, the stochastic melt-produced transition from columnar to equiaxed grain structure demonstrated increased hardness with decreasing grain size; however, the hardness of the smallest equiaxed grain structure was slightly less than that of the columnar grain structure. These findings underscore the vital importance of scanning strategies in optimizing the EB-PBF process to enhance material properties.more » « lessFree, publicly-accessible full text available December 1, 2025
-
evaluated by the sideband peak counting (SPC) nonlinear acoustics method and suitably validated by microfocus X-ray computed tomography (XCT). A wide-band chirp acoustic wave was used to inspect the microstructures of IN718 samples with five distinct process parameters, and the results reveal that the number of sidebands, which result from the non-linearity induced by porosity, is significantly influenced by the distribution and size of pores, in addition to the volume fraction. There was a clear correlation between extent of porosity and the corresponding value of the SPC index. XCT analysis corroborated these findings, providing quantitative insights into the porosity characteristics that affect the ensuing acoustic responses. The findings demonstrated that the porosity with varying sizes and distributions generate different SPC profiles, which were correlated to XCT results to quantitatively assess the size and spatial distributions of the porosity. Fusion of SPC and XCT characterization techniques provides a new strategic approach for non-destructive testing, where the SPC method offers rapid, qualitative evaluation, while XCT provides detailed spatial resolution for defect quantification. The integration of SPC could lead to the development of more cost-effective and advanced quality control protocols, ensuring the reliability of AM-manufactured components regardless of their geometry and composition.more » « less
An official website of the United States government
